Wildlife Connectivity Proposal # Evaluation of Measures to Reduce Wildlife-Vehicle Collisions and Promote Connectivity in a Sonoran Desert Environment – State Route 77 Santa Catalina – Tortolita Mountain Corridor Submitted by the: Arizona Game and Fish Department Wildlife Contracts Branch Collaborators Include: Coalition for Sonoran Desert Protection Arizona Department of Transportation Sky Island Alliance #### INTRODUCTION With continued human population growth and ongoing investment in transportation infrastructure, there is growing interest in removing wildlife from roadways for safety reasons, in addition to maintaining landscape connectivity for wildlife populations (Bissonette and Adair 2008, Huijser et al. 2008). This concern has generated an interest in safe crossing structures for wildlife by both transportation and resource management agencies as a tool for mitigating the negative interactions between roadways and wildlife (Forman et al. 2003, Huijser et al. 2008). Work toward habitat conservation has been a priority for Pima County since the inception of the Sonoran Desert Conservation Plan in 1999. In 2001, a team of biologists identified biologically-important lands. Part of this analysis included six "Critical Landscape Connections," or lands that have been shown to have landscape barriers between protected areas. The Santa Catalina – Tortolita linkage is one of these Critical Landscape Connections. And although connection of the unique sky island ecosystems in southern Arizona has long been a priority for many, in 2004 local stakeholders had the opportunity to identify specific areas where habitat connectivity efforts should be focused through a statewide workshop hosted by the Arizona Wildlife Linkages Workgroup (AWLW, Nordhaugen et al. 2006). This workshop identified 152 potential linkage zones across the state. Linkage #81 identified the importance of the connection between the Santa Catalina and Tortolita Mountains for various wildlife species, with State Route (SR) 77 as the primary barrier to wildlife movements (Figure 1). With the imminent expansion of SR 77, it was essential to determine where efforts to provide connectivity should be focused. Through least-cost modelling efforts that included information for 9 different species and thorough linkage zone evaluations, three main corridors across SR 77 were identified (Beier et al. 2006). Ultimately, through coordination between multiple entities that included natural resource and transportation and wildlife agencies, NGO's and landowners the main southernmost corridor was selected for wildlife crossing opportunities. In May 2006, Pima County residents voted for the half-cent excise tax to fund the Regional Transportation Plan, a comprehensive transportation plan including 2.1 billion dollars for transportation planning throughout Pima County. A portion of this funding is reserved to address wildlife connectivity and linkage plans associated with roadway development and improvement within Pima County. With financial support from Pima County's Regional Transportation Authority (RTA), implementation of wildlife crossings became a reality when the RTA approved a total of \$11 million for a large wildlife overpass and a large wildlife underpass across SR 77 in 2009. In 2014, the Arizona Department of Transportation (ADOT) began upgrading key sections of SR 77 within the identified corridor. As SR 77 is expanded and the two wildlife crossing structures are built, we are presented with a unique opportunity to evaluate conservation measures that will allow for the safe passage of wildlife across this roadway, while simultaneously increasing motorist safety. These wildlife crossing structures are located in a zone of high wildlife mortality (Ostergaard 2006), Sky Island Alliance, unpublished data) and – along with wildlife funnel fencing – are designed to reduce wildlife-vehicle collisions (WVCs). Though wildlife crossing structures have recently become more common in North America as a means to enhance permeability and reduce wildlife-vehicle collisions for a range of wildlife species, there is limited information on the efficacy of crossing structures in promoting permeability in the Sonoran Desert. While examples of successful crossing structures for large animals exist in other ecosystems (Clevenger and Waltho 2000, Gagnon et al. 2011, Sawyer et al. 2012), this is the first time that an overpass will be constructed in the Sonoran Desert. It is within the context of the Sonoran Desert's unique habitat and species assemblages that we propose to implement a monitoring program to evaluate the effectiveness of the crossing structures in an effort to document the multiple species benefits that the structures are designed to provide. Given the commitment by ADOT and RTA to ensure motorist safety and mitigate the effects of the newly constructed SR 77 on local wildlife populations, as well as its status as one of the first comprehensive efforts to promote wildlife connectivity within the Sonoran Desert, evaluation of the crossing structures on SR 77 is necessary to determine their success. Effectiveness monitoring will be conducted by the AGFD Wildlife Contracts Branch in cooperation with ADOT Environmental Planning Group, the Coalition for Sonoran Desert Protection, and Sky Island Alliance. Monitoring activities will include camera documentation of wildlife use of the passage structures and tracking of WVC incidence, and desert tortoise movement monitoring. ADOT Environmental Planning Group in cooperation with AGFD have already invested substantial resources into the incorporation of a wildlife video surveillance system at the overpass along with still cameras at the underpass. The Coalition for Sonoran Desert Protection has invested substantial resources into documenting wildlife occurrence in the vicinity of the project with their volunteer-supported Remote Wildlife Camera Project that they started in 2012. The Coalition has over 30 volunteers monitoring 18 motion-activated wildlife cameras in the project area. The Coalition has also been instrumental in garnering public support for the project. Sky Island Alliance conducts wildlife tracking workshops in the area, has a group of volunteers that regularly monitor transects for wildlife tracks, and has recently launched an iNaturalist project in the area (iNaturalist is an online platform that enables citizens to record wildlife sightings). Information gathered from this monitoring effort will inform the design and management of future wildlife crossing projects for the benefit of multiple species across multiple ecosystems. The insights we gain from this project will be extremely valuable for finding solutions to wildlife-highway conflicts in southern Arizona and fill a significant information gap. Figure 1. Least-cost linkage design for the Tucson, Tortolita, and Santa Catalina mountains and location of study area. Map from Beier et al. 2006. #### RESEARCH OBJECTIVES This project will utilize a staged approach to allow documentation of WVC and wildlife use of the overpass, underpass and associated funnel fencing. The specific objectives and associated procedures of our proposed SR 77 research project include: - 1. Assess wildlife use and passage rates of the wildlife crossings using integrated video and still camera surveillance. - 2. Investigate wildlife-vehicle collision patterns along SR 77. - 3. Monitor movements of Sonoran Desert tortoise and activity centers in relation to SR 77. - 4. Provide recommendations for the adaptive-management/maintenance of the structures and fencing as well as recommendations to guide future projects in southern Arizona. #### **APPROACH** ## Objective 1: Assess wildlife use and passage rates of the wildlife crossings using integrated video and still camera surveillance Given the tremendous commitment by ADOT and RTA to provide wildlife crossing structures to reduce motorist collisions with wildlife and mitigate the impact of highway barrier effects, it is essential to evaluate their level of acceptance by Sonoran Desert wildlife. This is the primary objective of the post-construction monitoring study and to accomplish this objective we will utilize 4-camera video (overpass) and rapid-still frame cameras (e.g., Reconyx®, underpass). Video and still cameras can provide detailed documentation of wildlife use and behavior in and near the newly constructed wildlife crossings along SR 77 (Figure 2). We will also install backup Reconyx® cameras on the overpass to ensure no loss of data, in the event of short term video system failures. At both structures cameras will be oriented in a manner that will allow us to evaluate passage rate over time and compare use between structure type (Dodd et al. 2007b, Gagnon et al. 2011). Long-term evaluation of the wildlife crossings is essential for a proper evaluation and future recommendations (Gagnon et al. 2011). All surveillance equipment is already obtained and is being installed by AGFD and ADOT as the construction project progresses and will be considered as a contribution to the overall monitoring project. Figure 2. Structure surveillance system components: video camera with infra-red lights (top left), four-feed video output (top right), video system trigger with still camera (bottom left), and still image (bottom right) that was installed on a wildlife overpass across SR 93. A nearly identical video system will be used to monitor the SR 77 overpass; we will use still cameras at the underpass and as backup documentation at the overpass. #### Objective 2: Investigate wildlife-vehicle collision patterns along SR 77 Determining number and composition of roadkill following completion of the two wildlife crossings and funnel-fencing along the newly improved stretch of SR 77 will allow for understanding their combined effectiveness in reducing collisions for various species types (mammal, reptile, amphibian, bird). It is essential to thoroughly collect data on larger wildlife, a higher safety concern to motorists, and equally important to document road kill trends for smaller species important to the ecosystem associated with the area. Studies conducted elsewhere in Pima County documented a large portion of game species along with other birds, mammals, reptiles and amphibians were killed on local roads. Although, pre-construction road kill data along SR 77 was "opportunistic" and emphasis was placed on large mammals, it nevertheless provides a sample of species found prior to construction (Ostergaard 2006). Additional intensive roadkill studies will be important to determine the effectiveness of the fencing in keeping both large and smaller animals off of SR 77 and guiding them to wildlife crossings and culverts. Funnel-fencing associated with most highway projects is generally placed along the right-of-way on each side of the road. Along the SR 77 project, designers have been forced to deviate from this traditional alignment and take the fencing away from the road to avoid local communities/business (Figure 3). This orientation provides a unique opportunity to evaluate the effectiveness of fencing as it is pulled away from the road and encompasses additional habitat. These differences will be accounted for during road kill analysis and we will compare their relative effectiveness. Figure 3. Map showing alignment of wildlife funnel-fencing and the complexities that will need to be accounted for (e.g. fencing distance from road) during road kill analysis. Map courtesy Coalition for Sonoran Desert Protection. #### Roadway Walking Surveys To accomplish this objective we will conduct road-kill surveys between MP 80.8 (CDO Bridge) and MP 86.0 (Hawser St) focusing on peak roadkill times identified through nearby mortality studies on Tangerine Road (Lowery et al. 2011). Road kill surveys will begin ½ hour before sunrise in order to minimize the loss of wildlife mortalities due to scavenger activity. We will document all road-killed wildlife by species and location. The complete road right-of-way will be surveyed (i.e., the area between the two right-of-way boundary fences). In areas where the wildlife funnel-fencing has been pulled back from the road we will still only evaluate the area associated with the ADOT right-of-way. All individual mortalities will be marked or removed from the roadway once they are recorded. We will compare the frequency of road mortalities for several taxonomic groups (i.e., amphibians, lizards, snakes, small mammals, carnivores, and ungulates) with the expectation that the frequency of road mortality should be lower on the segment of road where wildlife fencing has been installed on both sides of SR 77 versus area where only one side is fenced adjacent to SR 77, or fence ends. #### Roadway Driving Surveys Daily walking surveys will complement daily driving surveys along the remainder of the project area (approximately 4 miles). A single surveyor will drive along the edge of the paved roadway at 25 – 30 mph and scanned for larger-sized mortalities (i.e., rabbit and larger) or unusual (e.g. snakes, Gila monsters, desert tortoises, etc.) wildlife that otherwise might go undetected between alternating survey segments which were not scheduled to be intensively walked until the following days. This strategy will minimize loss of detections due to scavenger removal of animal remains across the project area. In addition, this method will allow for the collection of data points which would be removed by passers-by, degraded by repeated friction by passing vehicles, and extreme environmental conditions. Detections during the driving segments will be recorded on physical data forms and exact coordinates will be documented using hand-held GPS units. Roadway driving survey data were then added to the overall road mortality database prior to analysis. Additionally, the project team will coordinate with AGFD, ADOT, Pima County, DPS, Coalition for Sonoran Desert Protection, Tucson Audubon Society, Sky Island Alliance, and local volunteers to document and compile a comprehensive list of road kill throughout the duration of the study. #### Objective 3: Monitor movement of Sonoran Desert Tortoise in relation to SR 77 As with most wildlife species, roads are a nearly impermeable barrier to Sonoran Desert tortoises (SDT). Tortoises rarely cross roads due to their lack of mobility but they suffer high rates of mortality when they do attempt to cross. There is speculation that wildlife crossings can facilitate movement of desert tortoise across roads, however opportunities to evaluate the effectiveness of wildlife crossings for this species have been limited to date (Leavitt and Hoffman 2014). During the early stages of construction, project personnel removed several tortoises from the construction site, including one that attempted crossing through the underpass in October 2015 (Figure 4). Figure 4. Sonoran desert tortoise found in the wildlife underpass during construction, tracks in underpass that alerted contractor (upper left), leading to location of tortoise in underpass (right) for safe removal from the site (lower left). The tortoise population in the vicinity of the SR 77 wildlife crossings provides a unique opportunity to determine the combined effectiveness of an overpass, underpass, and multiple culverts linked with funnel fencing in minimizing road mortality while allowing for habitat connectivity for SDT. This knowledge is essential for long-term population persistence of desert tortoise and coexistence with humans as populations increase and additional infrastructure is required to accommodate this growth. Tortoises are infrequently detected on wildlife cameras even where they are abundant (Leavitt and Hoffman 2014). However, GPS telemetry has proven an effective method to determining permeability of wildlife species across roadways and is an appropriate approach for Sonoran desert tortoise (Dodd et al. 2007a, Dodd and Gagnon 2011, Gagnon et al. 2013). To evaluate SDT movements along SR 77 we will conduct visual surveys for the presence of SDTs and their sign adjacent to SR 77. These surveys will be conducted on foot by qualified AGFD biologists where rights-of-entry have been granted. Upon detecting a live SDT, we will fit the tortoise with a VHF radio-transmitter (Holohil RI-2B) and a GPS tracking unit. GPS tracking units will be replaced monthly and data will be downloaded into ArcGIS so that we may estimate home range size, activity patterns, and movement corridors for each individual. Figure 5. Sonoran Desert Tortoise with a VHF unit attached to front right and GPS unit attached on vertebral scutes (left). GPS position data from a Sonoran Desert Tortoise at South Mountain Park in 2015 demonstrating the precision for these units (right). # Objective 3: Provide recommendations for the adaptive-management of the structures as well as recommendations to guide future projects in southern Arizona. Using lessons learned from the implementation of the SR 77 structures and fencing, combined with current literature and research findings, we will provide general recommendations regarding the applicability of these measures for use in other scenarios throughout southern Arizona and the southwest. #### PROJECT SCHEDULE AND DELIVERABLES Upon completion of the wildlife crossings and fencing in 2016, along with installation of camera systems by AGFD and ADOT, AGFD with support and assistance from multiple stakeholders/volunteers will begin a three year evaluation of wildlife crossing use and desert tortoise movements. Walking roadkill surveys will be conducted in 2016 and 2018 assuming an April 2016 project completion. Field data collection will be followed by an additional year of data analysis and report preparation. It is estimated that this project will be initiated in May 2016 and will not exceed 4 years to final report completion followed by 6 months of reviews and revisions. The schedule for submission or accomplishment of project deliverables based on this project start schedule is detailed below. | Project Deliverable | Completion date(s) | |------------------------------------------------|------------------------------------------------| | Project status reports | Twice per year | | Final Project Report | NTE 4 years following completion of construct. | | Scientific journal manuscripts | Various during and after the project | | Professional/scientific symposia presentations | Various during and after the project | #### ESTIMATED RTA BUDGET SUMMARY | Estimated | | | | | | | | |--------------------------|----------------------------------------------|----------|----------|------------------|-----------|--|--| | Budget | SR 77 Wildlife Mitigation Measure Monitoring | | | | | | | | Budget Item | Year 1 | Year 2 | Year 3 | Year 4 | Total | | | | | | | | Reports/Analysis | | | | | Personal Services/ERE* | | | | | | | | | Research Personnel | \$45,658 | \$31,201 | \$38,640 | \$29,755 | \$145,254 | | | | Administrative support | 1,100 | 1,100 | 1,100 | 1,100 | \$4,400 | | | | Overhead 36% (PS) | 10,478 | 7,136 | 8,946 | 6,696 | \$33,255 | | | | Total | 57,236 | 39,437 | 48,685 | 37,551 | \$182,909 | | | | Equipment** | | | | | | | | | Tortoise GPS Telemetry | 14,594 | | | | 14,594 | | | | and VHF Units (X 10) | | | | | | | | | Total | 14,594 | 0 | 0 | 0 | 14,594 | | | | Per Diem** | 0 | 0 | 0 | 0 | 0 | | | | Other Operating Expenses | 500 | 500 | 500 | 500 | 2,000 | | | | Mileage*** | 0 | 0 | 0 | 0 | 0 | | | | Total Funding Req. | \$72,330 | \$39,937 | \$49,185 | \$38,051 | \$199,503 | | | ^{*} AGFD will supplement Biologist and Program Manager salaries #### ADDITIONAL CONTRIBUTIONS/MATCH (>1:1) <u>AGFD</u> – Will provide a portion of salaries for project oversight for Contracts Supervisor, Lead Biologists (10k ea for 4 years = \$120k). AGFD will provide all vehicles, maintenance, mileage (roughly 12k), and per diem (roughly 2k) for AGFD personnel for the project duration. AGFD will provide telemetry and laboratory equipment, and data analysis software (Roughly 2k). AGFD will provide 10 additional tortoise GPS units to allow monthly switch and battery charge (\$12k)–<u>AGFD Est. Contribution = \$148,000</u> <u>ADOT-</u> Providing all video and still cameras and components and covering costs for installation (\$36,500). Funding for oversight of proper fencing installation (\$14,800), ADOT Biologist to contribute 5k/yr for project collaboration/meetings (20k). Assistance in collection of road kill data (TBD). **ADOT Est. Contribution = \$71,300** <u>Coalition for Sonoran Desert Protection, Sky Island Alliance, other partners—</u> In kind contributions through project collaboration and road kill, camera, and track data collection to supplement monitoring findings. <u>CSDP Est. Contribution = \$78,450 SIA Est. Contribution (TBD)</u> <u>Department of Public Safety</u> – Collection and dissemination of historic and current road kill data. (TBD) ^{**}All Still and Video Cameras will be payed for and installed by AGFD and ADOT prior to project completion and AGFD will contribute 10 additional GPS units for monthly switch out and battery charge ^{***}AGFD will cover per diem costs ^{****} Vehicle mileage and costs will be covered by AGFD #### PROJECT IMPLEMENTATION CONTACTS Arizona Game and Fish Department will oversee implementation of mitigation monitoring with the following team members: Jeff Gagnon, Research Biologist Arizona Game and Fish Department 5000 W. Carefree Highway Phoenix, AZ 85086-5000 Cell: 928.814.8925 E-mail: jgagnon@azgfd.gov Scott Sprague, Research Biologist Arizona Game and Fish Department 5000 W. Carefree Highway Phoenix, AZ 85086-5000 Cell: 979.820.2673 E-mail: ssprague@azgfd.gov Chad Loberger, Field Biologist Arizona Game and Fish Department 5000 W. Carefree Highway Phoenix, AZ 85086-5000 Cell: 928.863.8683 E-mail: cloberger@azgfd.gov Dan Leavitt, Research Biologist Arizona Game and Fish Department 5000 W. Carefree Highway Phoenix, AZ 85086-5000 Cell: 520.609.2166 E-mail: dleavitt@azgfd.gov Shawn Lowery, Research Biologist Arizona Game and Fish Department 5000 W. Carefree Highway Phoenix, AZ 85086-5000 Cell: 520.609.2166 E-mail: slowery@azgfd.gov Ray Schweinsburg, Program Supervisor Arizona Game and Fish Department 5000 W. Carefree Highway Phoenix, AZ 85086-5000 Phone: 623.236.7251 FAX: 623.236.7918 E-mail: rschweinsburg@azgfd.gov #### PROJECT COLLABORATOR CONTACTS Multiple collaborators will provide support and be involved with the project at various levels, these include: #### Coalition for Sonoran Desert Protection Carolyn Campbell, Executive Director Coalition for Sonoran Desert Protection 300 East University Blvd #120 Tucson, AZ 85705 Phone: 520.388.9925 Carolyn.Campbell@sonorandesert.org Kathleen Kennedy, Program and Development Coordinator Coalition for Sonoran Desert Protection 300 East University Blvd #120 Tucson, AZ 85705 Phone: 520.388.9925 Email: Kathleen.Kennedy@sonorandesert.org #### Arizona Department of Transportation Justin White, Roadside Resource Manager Arizona Department of Transportation 1611 W. Jackson St. Phoenix, AZ 85007 Phone: 602.712.7769 Email: JWhite@azdot.gov #### Tucson Audubon Society Christina McVie, Conservation Chair Tucson Audubon Society 300 E University Blvd, #120 AZ 85705 Phone: 520.629.0510 Email: christina.mcvie@gmail.com #### Sky Island Alliance Jessica Moreno 406 S. 4th Ave Tucson, AZ 85701 520-624-7080 jessica@skyislandalliance.org #### LITERATURE CITED - Beier, P., E. Garding, and D. Majka. 2006. Arizona Missing Linkages: Tucson Tortolita Santa Catalina Mountains Linkage Design. Report to Arizona Game and Fish Department. School of Forestry, Northern Arizona University. - Bissonette, J. A., and W. Adair. 2008. Restoring habitat permeability to roaded landscapes with isometrically-scaled wildlife crossings. Biological Conservation 141:482-488. - Clevenger, A. P., and N. Waltho. 2000. Factors Influencing the Effectiveness of Wildlife Underpasses in Banff National Park, Alberta, Canada. Conservation Biology 14:47-56. - Dodd, N. L., and J. W. Gagnon. 2011. Influence of underpasses and traffic on white-tailed deer highway permeability. Wildlife Society Bulletin 35:270-281. - Dodd, N. L., J. W. Gagnon, S. Boe, and R. E. Schweinsburg. 2007a. Assessment of Elk Highway Permeability by Using Global Positioning System Telemetry. Journal of Wildlife Management 71:1107-1117. - Dodd, N. L., J. W. Gagnon, A. L. Manzo, and R. E. Schweinsburg. 2007b. Video Surveillance to Assess Highway Underpass Use by Elk in Arizona. Journal of Wildlife Management 71:637-645. - Forman, R. T. T., D. Sperling, J. A. Bissonette, A. P. Clevenger, C. D. Cutshall, V. H. Dale, L. Fahrig, R. France, C. R. Goldman, K. Heanue, J. A. Jones, F. J. Swanson, T. Turrentine, and T. C. Winter. 2003. Road Ecology; Science and Solutions. Island Press, Covelo, CA. - Gagnon, J. W., N. L. Dodd, K. S. Ogren, and R. E. Schweinsburg. 2011. Factors associated with use of wildlife underpasses and importance of long-term monitoring. Journal of Wildlife Management 75:1477-1487. - Gagnon, J. W., N. L. Dodd, S. C. Sprague, R. E. Nelson, C. D. Loberger, S. Boe, and R. E. Schweinsburg. 2013. Elk movements associated with a high-traffic highway: Interstate 17. Final project report 647, Arizona Department of Transportation Research Center, Phoenix, AZ. - Huijser, M. P., P. McGowen, J. Fuller, A. Hardy, A. Kociolek, A. P. Clevenger, D. Smith, and R. Ament. 2008. Wildlife-vehicle collision reduction study. Report to Congress. U.S. Department of Transportation, Federal Highway Administration, Washington D.C., USA. - Leavitt, D. J., and H. A. Hoffman. 2014. Assesing the efficacy of desert tortoise fencing and crossing structures between mile posts 204-206 on State Route 87. Report to Arizona Department of Transportation. Arizona Game and Fish Department, Phoenix, AZ. - Lowery, S. F., S. T. Blackman, and D. D. Grandmaison. 2011. Tangerine Road and La Cholla Boulevard mortality hotspot evaluation. Prepared for Town of Oro Valley Public Works Operations Division and Town of Marana Environmental Engineering Division, Pima County, Arizona. Arizona Game and Fish Department. January 2011. - Nordhaugen, S. E., E. Erlandsen, P. Beier, B. D. Eilerts, R. E. Schweinsburg, T. Brennan, T. Cordery, N. L. Dodd, M. Maiefski, J. Przybyl, S. Thomas, K. Vacariu, and S. Wells. 2006. Arizona's Wildlife Linkages Assessment. - Ostergaard, E. 2006. Wildlife Mortality and Corridor Use near Highway 77, Oro Valley to Catalina, Pima County, Arizona. - Sawyer, H., C. Lebeau, and T. Hart. 2012. Mitigating roadway impacts to migratory mule deer-A case study with underpasses and continuous fencing. Wildlife Society Bulletin 36:492-498.